Object detectors are usually equipped with backbone networks designed for image classification. It might be sub-optimal because of the gap between the tasks of image classification and object detection. In this work, we present DetNAS to use Neural Architecture Search (NAS) for the design of better backbones for object detection. It is non-trivial because detection trainings typically need ImageNet pre-training while NAS systems require accuracies on the target detection task as supervisory signals. Based on the technique of one-shot supernet, which contains all possible networks in the search space, we propose a framework for backbone search on object detection. We train the supernet under the typical detector training schedule: ImageNet pre-training and detection fine-tuning. Then, the architecture search is performed on the trained supernet, using the detection task as the guidance. This framework makes NAS on backbones very efficient. In experiments, we show the effectiveness of DetNAS on various detectors, for instance, one-stage RetinaNet and the two-stage FPN. We empirically find that networks searched on object detection shows consistent superiority compared to those searched on ImageNet classification. The resulting architecture achieves superior performance than ResNet-50 and ResNet-101 on COCO with much less FLOPs complexity.


翻译:由于图像分类任务与物体探测任务之间的差距,探测器通常配有用于图像分类的骨干网络。由于图像分类任务与物体探测任务之间的差距,它可能是亚最佳的。在这项工作中,我们介绍DetNAS使用神经结构搜索(NAS)设计更好的天体探测主干线设计。这是非三角的,因为探测培训通常需要图像网络预培训,而NAS系统则要求将目标检测任务视为监督信号。根据包含搜索空间中所有可能的网络的一发超级网技术,我们提议了一个对物体探测进行主干搜索的框架。我们根据典型的探测器培训时间表(图像网络预培训和探测微调)对超级网络进行培训。然后,在经过培训的超级网络上进行结构搜索,使用探测任务作为指导。这个框架使NAS在骨干上非常高效。在实验中,我们展示DatNAS在各种探测器上的效力,例如,一个阶段的RetinNet和两个阶段的FPNPN。我们实证地发现,在物体探测上搜索的网络上所搜索的网络显示的威力比在图像网络上所搜索的精度高。

3
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
53+阅读 · 2020年3月16日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年4月9日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
5+阅读 · 2018年4月17日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
53+阅读 · 2020年3月16日
相关资讯
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关论文
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年4月9日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
5+阅读 · 2018年4月17日
Top
微信扫码咨询专知VIP会员