We investigate estimation of causal effects of multiple competing (multi-valued) treatments in the absence of randomization. Our work is motivated by an intention-to-treat study of the relative metabolic risk of assignment to one of six commonly prescribed antipsychotic drugs in a cohort of adults with serious mental illness. Doubly-robust estimators of multi-level treatment effects with observational data, such as targeted minimum loss-based estimation (TMLE), require that either the treatment model or outcome model is correctly specified to ensure consistent estimation. However, common TMLE implementations estimate treatment probabilities using multiple binomial regressions rather than a single multinomial regression. We implement a TMLE estimator that uses multinomial treatment assignment and ensemble machine learning to estimate average treatment effects. Our implementation achieves superior coverage probability relative to the binomial implementation in simulation experiments with varying treatment propensity overlap and event rates. An evaluation of the causal effects of six antipsychotic drugs on the risk of diabetes or death illustrates our approach. We find a relative safety benefit of moving from a second-generation antipyschotic thought to have more favorable metabolic risk profile relative to other second-generation drugs to a less commonly prescribed first-generation antipyschotic known for having a low rate of metabolic disturbance.
翻译:我们调查的是,在没有随机化的情况下,多种竞争(多价)治疗的因果关系估计。我们工作的动机是,对严重精神疾病成年人组群中六种普通处方抗精神病药物中的一种被分配到六种常见抗精神病药物的相对代谢风险进行意图到研究研究。多层次治疗效应的多点有机炎估计者与观察数据,例如有针对性的最低损失估计(TMLE)相比,要求正确指定治疗模式或结果模型以确保一致的估计。然而,共同的TMLE实施方法利用多种二相回归而不是单一的多位回归来估计治疗概率。我们采用了一个TMLE 估测仪,使用多种处方治疗任务和混合机来估计平均治疗效果。我们的实施在模拟实验中,与基于不同治疗倾向的重复和事件率的模拟实验相比,具有较高的覆盖率。六种抗精神病药物对糖尿病或死亡风险的因果关系评估说明了我们的做法。我们发现,从已知的第二代代代代次的相对偏好性药物转向其他代代代代代相较低的抗药性药物具有相对安全性的好处。我们发现,从已知的低代代代代代代代代代的抗药性药物具有较低的抗药性思维。