This paper presents a deep learning-based audio-in-image watermarking scheme. Audio-in-image watermarking is the process of covertly embedding and extracting audio watermarks on a cover-image. Using audio watermarks can open up possibilities for different downstream applications. For the purpose of implementing an audio-in-image watermarking that adapts to the demands of increasingly diverse situations, a neural network architecture is designed to automatically learn the watermarking process in an unsupervised manner. In addition, a similarity network is developed to recognize the audio watermarks under distortions, therefore providing robustness to the proposed method. Experimental results have shown high fidelity and robustness of the proposed blind audio-in-image watermarking scheme.
翻译:本文展示了一种深层次的基于学习的模拟音频标记办法。 模拟音频标记是隐蔽地嵌入和提取封面图象上的音频标记的过程。 使用音频标记可以为不同的下游应用开辟可能性。 为了实施一个适应日益多样化情况的需求的模拟音频标记,设计了一个神经网络结构,以不受监督的方式自动学习水标识过程。 此外,还开发了一个相似的网络,以识别正在扭曲的音频水标记,从而为拟议方法提供稳健性。 实验结果显示,拟议的盲音类模拟水标识办法具有高度的忠诚性和稳健性。