Tradition ML development methodology does not enable a large number of contributors, each with distinct objectives, to work collectively on the creation and extension of a shared intelligent system. Enabling such a collaborative methodology can accelerate the rate of innovation, increase ML technologies accessibility and enable the emergence of novel capabilities. We believe that this can be achieved through the definition of abstraction boundaries and a modularized representation of ML models and methods. We present a multi-agent framework for collaborative and asynchronous extension of dynamic large-scale multitask intelligent systems.
翻译:传统ML开发方法不能使众多贡献者(每个贡献者都有不同的目标)共同努力,建立和扩大共享的智能系统,使这种协作方法能够加快创新速度,增加ML技术的可获取性,并促成新能力的出现。我们认为,可以通过确定抽象界限和模块化地代表ML模式和方法来实现这一点。我们为动态大型多任务智能系统的合作和同步扩展提供了一个多试剂框架。