Expression of emotions is a crucial part of daily human communication. Emotion recognition in conversations (ERC) is an emerging field of study, where the primary task is to identify the emotion behind each utterance in a conversation. Though a lot of work has been done on ERC in the past, these works only focus on ERC in the English language, thereby ignoring any other languages. In this paper, we present Multilingual MELD (M-MELD), where we extend the Multimodal EmotionLines Dataset (MELD) \cite{poria2018meld} to 4 other languages beyond English, namely Greek, Polish, French, and Spanish. Beyond just establishing strong baselines for all of these 4 languages, we also propose a novel architecture, DiscLSTM, that uses both sequential and conversational discourse context in a conversational dialogue for ERC. Our proposed approach is computationally efficient, can transfer across languages using just a cross-lingual encoder, and achieves better performance than most uni-modal text approaches in the literature on both MELD and M-MELD. We make our data and code publicly on GitHub.


翻译:情感表达是人类日常交流的重要组成部分。对话情感识别(ERC)是一个新兴的研究领域,其主要任务是识别对话中每个话语背后的情感。尽管过去已经有很多关于ERC的研究工作,但这些工作仅关注英语中的ERC,因此忽略了其他语言。在本文中,我们提出了一个名为多语言MELD(M-MELD)的数据集,将多模态EmotionLines数据集(MELD)\cite{poria2018meld}扩展到英语之外的其他4种语言,即希腊语、波兰语、法语和西班牙语。除了针对这4种语言建立强的基线之外,我们还提出了一种新颖的架构DiscLSTM,在对话中使用连续和交互式话语上下文进行ERC。我们的方法在计算效率上非常高,只需使用跨语言编码器即可在各种语言之间进行传输,并且在MELD和M-MELD上的性能均优于文献中大多数单模态文本方法。我们将我们的数据和代码公开于GitHub。

0
下载
关闭预览

相关内容

计算机对从传感器采集来的信号进行分析和处理,从而得出对方(人)正处在的情感状态,这种行为叫做情感识别。
【COMPTEXT2022教程】跨语言监督文本分类,41页ppt
专知会员服务
17+阅读 · 2022年6月14日
AAAI 2022 | 基于预训练-微调框架的图像差异描述任务
专知会员服务
17+阅读 · 2022年2月26日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【推荐】RNN最新研究进展综述
机器学习研究会
25+阅读 · 2018年1月6日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月16日
Arxiv
33+阅读 · 2022年2月15日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员