Artificial intelligence (AI)-driven zero-touch massive network slicing is envisioned to be a disruptive technology in beyond 5G (B5G)/6G, where tenancy would be extended to the final consumer in the form of advanced digital use-cases. In this paper, we propose a novel model-free deep reinforcement learning (DRL) framework, called collaborative statistical Actor-Critic (CS-AC) that enables a scalable and farsighted slice performance management in a 6G-like RAN scenario that is built upon mobile edge computing (MEC) and massive multiple-input multiple-output (mMIMO). In this intent, the proposed CS-AC targets the optimization of the latency cost under a long-term statistical service-level agreement (SLA). In particular, we consider the Q-th delay percentile SLA metric and enforce some slice-specific preset constraints on it. Moreover, to implement distributed learners, we propose a developed variant of soft Actor-Critic (SAC) with less hyperparameter sensitivity. Finally, we present numerical results to showcase the gain of the adopted approach on our built OpenAI-based network slicing environment and verify the performance in terms of latency, SLA Q-th percentile, and time efficiency. To the best of our knowledge, this is the first work that studies the feasibility of an AI-driven approach for massive network slicing under statistical SLA.
翻译:在5G(B5G)/6G(5G)/6G(5G)以上,根据设想,人工智能(AI)驱动的零触摸型大规模网络残割是一种破坏技术,在5G(B5G)/6G(5G)/6G(5G)/G(6G)之外,租赁将扩大到最终消费者,其形式是先进的数字使用箱;在本文件中,我们提出一个新的无模型深度强化学习(DRL)框架,称为协作性统计行为者-批评(CS-AC),在类似RAN(RAN)的6G(RAN)情景下,可以进行可缩放和高视度的切片绩效管理,在移动边缘计算(MEC)和大规模多输出(MIMO)多输出(MIMO)上,拟议的CS-AC(C)租赁(MIMO)-AC)的租赁(租赁)将目标扩大到在长期统计服务级协议(SLA)下优化最终消费成本;特别是,我们考虑Q-延迟百分解(SLA)标准衡量(SAL)标准)标准(SLA-IA-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-ILILI-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-