We revisit the well-studied problem of differentially private empirical risk minimization (ERM). We show that for unconstrained convex generalized linear models (GLMs), one can obtain an excess empirical risk of $\tilde O\left(\sqrt{{\texttt{rank}}}/\epsilon n\right)$, where ${\texttt{rank}}$ is the rank of the feature matrix in the GLM problem, $n$ is the number of data samples, and $\epsilon$ is the privacy parameter. This bound is attained via differentially private gradient descent (DP-GD). Furthermore, via the first lower bound for unconstrained private ERM, we show that our upper bound is tight. In sharp contrast to the constrained ERM setting, there is no dependence on the dimensionality of the ambient model space ($p$). (Notice that ${\texttt{rank}}\leq \min\{n, p\}$.) Besides, we obtain an analogous excess population risk bound which depends on ${\texttt{rank}}$ instead of $p$. For the smooth non-convex GLM setting (i.e., where the objective function is non-convex but preserves the GLM structure), we further show that DP-GD attains a dimension-independent convergence of $\tilde O\left(\sqrt{{\texttt{rank}}}/\epsilon n\right)$ to a first-order-stationary-point of the underlying objective. Finally, we show that for convex GLMs, a variant of DP-GD commonly used in practice (which involves clipping the individual gradients) also exhibits the same dimension-independent convergence to the minimum of a well-defined objective. To that end, we provide a structural lemma that characterizes the effect of clipping on the optimization profile of DP-GD.


翻译:我们重新审视了不同私人经验风险最小化(ERM)这一研究周全的问题。 我们发现,对于未受限制的普通线性模型(GLM)来说,我们可以得到超额的经验风险$tilde Oleft(sqrt ⁇ t{rk{{{{{{{{epsilonn\right nright)$, 美元是GLM问题中特性矩阵的排名, 美元是数据样本的数量, 美元是隐私参数。 对于未受限制的私人机构(DP-GD)来说,这一约束是通过差异性私人梯度下降(DP-GDM)实现的。此外,我们通过对未受限制的私人机构企业企业(sqrate Oright) 的下限,我们的上限是紧紧紧的。 与受限制的机构设置相比,没有依赖环境模型空间的维度的维度(ptrutt{rick_ral_lickral_ral_ral_ral_lick_l-lick_l-lick_lick_lick_O_lick_lick_lick_lick_lick_lick_lick_lick_lick_l_l_lick_l_l_l_l_lut_lick_l_t_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
专知会员服务
62+阅读 · 2020年3月4日
已删除
将门创投
6+阅读 · 2019年4月10日
Nature 一周论文导读 | 2019 年 2 月 14 日
科研圈
7+阅读 · 2019年2月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月23日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年4月10日
Nature 一周论文导读 | 2019 年 2 月 14 日
科研圈
7+阅读 · 2019年2月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员