In this work we propose a deep neural network based surrogate model for a plasma shadowgraph - a technique for visualization of perturbations in a transparent medium. We are substituting the numerical code by a computationally cheaper projection based surrogate model that is able to approximate the electric fields at a given time without computing all preceding electric fields as required by numerical methods. This means that the projection based surrogate model allows to recover the solution of the governing 3D partial differential equation, 3D wave equation, at any point of a given compute domain and configuration without the need to run a full simulation. This model has shown a good quality of reconstruction in a problem of interpolation of data within a narrow range of simulation parameters and can be used for input data of large size.
翻译:在这项工作中,我们提出了一个以深神经网络为基础的等离子暗影学替代模型,这是一种在透明介质中可视化扰动的技术。我们正在用一种基于计算更廉价的基于预测的代孕模型来取代数字代码,这种代孕模型能够在特定时间接近电场,而不必按照数字方法的要求计算前面所有电场。这意味着基于预测的代孕模型可以恢复3D局部偏差方程的解决方案,即3D波方程,在特定计算域和配置的任何地点,无需进行完全模拟。这一模型在数据在狭小的模拟参数范围内的内插问题下显示了良好的重建质量,并可用于大规模输入数据。