The birth of massive open online courses (MOOCs) has had an undeniable effect on how teaching is being delivered. It seems that traditional in class teaching is becoming less popular with the young generation, the generation that wants to choose when, where and at what pace they are learning. As such, many universities are moving towards taking their courses, at least partially, online. However, online courses, although very appealing to the younger generation of learners, come at a cost. For example, the dropout rate of such courses is higher than that of more traditional ones, and the reduced in person interaction with the teachers results in less timely guidance and intervention from the educators. Machine learning (ML) based approaches have shown phenomenal successes in other domains. The existing stigma that applying ML based techniques requires a large amount of data seems to be a bottleneck when dealing with small scale courses with limited amounts of produced data. In this study, we show not only that the data collected from an online learning management system could be well utilized in order to predict students overall performance but also that it could be used to propose timely intervention strategies to boost the students performance level. The results of this study indicate that effective intervention strategies could be suggested as early as the middle of the course to change the course of students progress for the better. We also present an assistive pedagogical tool based on the outcome of this study, to assist in identifying challenging students and in suggesting early intervention strategies.


翻译:大量开放式在线课程(MOOCs)的诞生对教学的提供方式产生了不可否认的影响。 班级教学的传统似乎越来越不受年轻一代的欢迎,因为年轻一代希望选择何时、何地和以何种速度学习的一代人。 因此,许多大学正在走向选修课程,至少部分上在线课程。 然而,在线课程虽然对年轻一代学生非常吸引,但成本很高。例如,这类课程的辍学率高于较传统课程的辍学率,与教师的交流减少导致教师的指导和干预不那么及时。基于机器学习(ML)的方法在其他领域表现出惊人的成功。应用基于ML技术的污名要求大量的数据在处理数量有限的小规模课程时似乎是一个瓶颈。在这项研究中,我们不仅可以很好地利用从网上学习管理系统收集的数据来预测学生的总体表现,而且可以用来提出及时的干预战略来提升学生的成绩水平。 以机器学习(ML)方法为基础的方法表明,应用ML技术需要大量的数据,而现在的污名化的污名化在与制作数据数量有限的小规模课程时似乎是一种瓶颈。我们不仅能够很好地利用从网上学习管理系统来预测学生的成绩,我们建议以早期的早期的教学结果。我们还可以建议以研究的早期的早期干预战略作为学习的结果。我们作为中间的辅助工具。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
117+阅读 · 2019年12月24日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
146+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
6+阅读 · 2020年12月8日
Arxiv
45+阅读 · 2019年12月20日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
26+阅读 · 2018年8月19日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
117+阅读 · 2019年12月24日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
146+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
6+阅读 · 2020年12月8日
Arxiv
45+阅读 · 2019年12月20日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
26+阅读 · 2018年8月19日
Top
微信扫码咨询专知VIP会员