In this paper, we propose GNNUnlock, the first-of-its-kind oracle-less machine learning-based attack on provably secure logic locking that can identify any desired protection logic without focusing on a specific syntactic topology. The key is to leverage a well-trained graph neural network (GNN) to identify all the gates in a given locked netlist that belong to the targeted protection logic, without requiring an oracle. This approach fits perfectly with the targeted problem since a circuit is a graph with an inherent structure and the protection logic is a sub-graph of nodes (gates) with specific and common characteristics. GNNs are powerful in capturing the nodes' neighborhood properties, facilitating the detection of the protection logic. To rectify any misclassifications induced by the GNN, we additionally propose a connectivity analysis-based post-processing algorithm to successfully remove the predicted protection logic, thereby retrieving the original design. Our extensive experimental evaluation demonstrates that GNNUnlock is 99.24%-100% successful in breaking various benchmarks locked using stripped-functionality logic locking, tenacious and traceless logic locking, and Anti-SAT. Our proposed post-processing enhances the detection accuracy, reaching 100% for all of our tested locked benchmarks. Analysis of the results corroborates that GNNUnlock is powerful enough to break the considered schemes under different parameters, synthesis settings, and technology nodes. The evaluation further shows that GNNUnlock successfully breaks corner cases where even the most advanced state-of-the-art attacks fail.
翻译:在本文中,我们提议GNNUnlock, 即首个其类无神之灵的机器学习性攻击, 以可靠且安全的逻辑为基础, 锁定可以辨别任何理想的保护逻辑, 而不专注于特定的合成型地形。 关键在于利用训练有素的图形神经网络( GNNN) 来利用来自GNNN(GN)的任何错误分类, 以成功清除预测的保护逻辑, 从而重新探索原始设计。 我们的广泛实验评估显示, GNNNUlock是一个带有内在结构的图, 保护逻辑是具有具体和共同特征的节点(门)的子图。 GNNNN具有强大的能力, 它可以捕捉节点的周边属性, 便利对保护逻辑逻辑的逻辑的发现。 为了纠正GNNNN的错误, 我们还提议一个基于连接分析的后处理算法, 成功地删除预言的保护逻辑, 从而重新定位原始设计。 我们广泛的实验评估显示, GNNUlock- 100% 成功打破了各种基准, 使用被剥蚀的逻辑、 坚固和追踪的G- NNQ- slental 分析, 测试的所有的精确的系统, 测试, 系统测试, 彻底的系统测试, 测试, 将所有的系统测试和精确的系统测试, 都更精确的系统测试, 更精确的系统测试, 更精确的系统, 更精确的系统, 更精确的精确的精确的精确的精确的精确的精确的系统。