As software systems are becoming more pervasive, they are also becoming more susceptible to failures, resulting in potentially lethal combinations. Software testing is critical to preventing software failures but is, arguably, the least understood part of the software life cycle and the toughest to perform correctly. Adequate research has been carried out in both the process and technology dimensions of testing, but not in the human dimensions. This paper attempts to fill in the gap by exploring the human dimension, i.e., trying to understand the motivation of software professionals to take up and sustain testing careers. Towards that end, a survey was conducted in four countries - India, Canada, Cuba, and China - to try to understand how professional software testers perceive and value work-related factors that could influence their motivation to take up and sustain testing careers. With a sample of 220 software professionals, we observed that very few professionals are keen to take up testing careers. Some aspects of software testing, such as the learning opportunities, appear to be a common motivator across the four countries; whereas the treatment meted out to testers as second-class citizens and the complexity of the job appeared to be the most important de-motivators. This comparative study offers useful insights that can help global software industry leaders to come up with an action plan to put the software testing profession under a new light. That could increase the number of software engineers choosing testing careers, which would facilitate quality testing.


翻译:随着软件系统越来越普遍,它们也越来越容易出现失败,从而导致潜在的致命组合。软件测试对于防止软件失败至关重要,但可以说,是软件生命周期中最不易理解的部分,也是最难正确完成的。在测试的过程和技术方面,已经进行了充分的研究,但没有在人的方面进行了充分的研究。本文试图通过探索人的方面来填补差距,即试图理解软件专业人员接受和保持测试职业的动机。为此,在印度、加拿大、古巴和中国四个国家进行了一项调查,试图了解专业软件测试者如何看待和重视可能影响他们接受和保持测试职业的积极性的工作相关因素。通过对220名软件专业人员的抽样调查,我们发现很少有专业人员愿意接受测试职业。软件测试的某些方面,例如学习机会,似乎是四国的一个常见的驱动器;对作为二等级公民的测试者进行的治疗,以及工作的复杂性似乎有助于进行最重要的去motivestical的测试。这一比较研究提供了一种实用的软件测试,从而可以增加软件在软件行业中的测试。

0
下载
关闭预览

相关内容

IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
10+阅读 · 2020年11月26日
A Survey on Edge Intelligence
Arxiv
51+阅读 · 2020年3月26日
ViZDoom Competitions: Playing Doom from Pixels
Arxiv
5+阅读 · 2018年9月10日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关VIP内容
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员