Processing-in-memory (PIM), an increasingly studied neuromorphic hardware, promises orders of energy and throughput improvements for deep learning inference. Leveraging the massively parallel and efficient analog computing inside memories, PIM circumvents the bottlenecks of data movements in conventional digital hardware. However, an extra quantization step (i.e. PIM quantization), typically with limited resolution due to hardware constraints, is required to convert the analog computing results into digital domain. Meanwhile, non-ideal effects extensively exist in PIM quantization because of the imperfect analog-to-digital interface, which further compromises the inference accuracy. In this paper, we propose a method for training quantized networks to incorporate PIM quantization, which is ubiquitous to all PIM systems. Specifically, we propose a PIM quantization aware training (PIM-QAT) algorithm, and introduce rescaling techniques during backward and forward propagation by analyzing the training dynamics to facilitate training convergence. We also propose two techniques, namely batch normalization (BN) calibration and adjusted precision training, to suppress the adverse effects of non-ideal linearity and stochastic thermal noise involved in real PIM chips. Our method is validated on three mainstream PIM decomposition schemes, and physically on a prototype chip. Comparing with directly deploying conventionally trained quantized model on PIM systems, which does not take into account this extra quantization step and thus fails, our method provides significant improvement. It also achieves comparable inference accuracy on PIM systems as that of conventionally quantized models on digital hardware, across CIFAR10 and CIFAR100 datasets using various network depths for the most popular network topology.


翻译:处理- 处理- 处理- 处理( PIM) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM) ) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM) ) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM) ) (PIM) (PIM) ) (PIM ) ) (PIM (PIM) ) (PIM (P) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM) (PIM ) ) (PIM ) ) (PIM (PI ) ( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (PIM (PIM ( ) ( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员