We propose an orthogonal approximate message passing (OAMP) algorithm for signal estimation in the rectangular spiked matrix model with general rotationally invariant (RI) noise. We establish a rigorous state evolution that precisely characterizes the algorithm's high-dimensional dynamics and enables the construction of iteration-wise optimal denoisers. Within this framework, we accommodate spectral initializations under minimal assumptions on the empirical noise spectrum. In the rectangular setting, where a single rank-one component typically generates multiple informative outliers, we further propose a procedure for combining these outliers under mild non-Gaussian signal assumptions. For general RI noise models, the predicted performance of the proposed optimal OAMP algorithm agrees with replica-symmetric predictions for the associated Bayes-optimal estimator, and we conjecture that it is statistically optimal within a broad class of iterative estimation methods.
翻译:我们提出了一种正交近似消息传递(OAMP)算法,用于在具有一般旋转不变(RI)噪声的矩形尖峰矩阵模型中进行信号估计。我们建立了一个严格的状态演化方程,精确刻画了算法的高维动态,并使得迭代最优去噪器的构建成为可能。在此框架内,我们在对经验噪声谱的最小假设下,容纳了谱初始化方法。在矩形设置中,单个秩为一的分量通常会产生多个信息性异常值,我们进一步提出了一种在温和的非高斯信号假设下合并这些异常值的程序。对于一般的RI噪声模型,所提出的最优OAMP算法的预测性能与相关贝叶斯最优估计器的复本对称预测结果一致,我们推测其在广泛的迭代估计方法类别中具有统计最优性。