We show that there exists an adjacency labelling scheme for planar graphs where each vertex of an $n$-vertex planar graph $G$ is assigned a $(1+o(1))\log_2 n$-bit label and the labels of two vertices $u$ and $v$ are sufficient to determine if $uv$ is an edge of $G$. This is optimal up to the lower order term and is the first such asymptotically optimal result. An alternative, but equivalent, interpretation of this result is that, for every $n$, there exists a graph $U_n$ with $n^{1+o(1)}$ vertices such that every $n$-vertex planar graph is an induced subgraph of $U_n$. These results generalize to bounded genus graphs, apex-minor-free graphs, bounded-degree graphs from minor closed families, and $k$-planar graphs.
翻译:我们显示,对平面图有一个相近标签办法,即为1美元/顶点平面图的每个顶点指定1美元(1+o(1))\log_2n美元/位标签和两个顶点的标签($u美元和$v美元)足以确定1美元是否为G美元的边缘。这是在较低顺序条件下最理想的,也是第一个类似模拟最佳结果。另一种办法,但与此相当的是,对这个结果的解释是,每1美元,就有1美元/美元/美元1+o(1)美元/位值的图形,每美元/位点平面图就有1美元/美元/位值的图,因此,每美元/点平面图都是以美元为诱导引出的一个子图。这些结果一般化为捆绑的genus图、apex-minor-fort图、来自小型封闭家庭的封闭度图和1k美元-平面图。