Production high-performance computing systems continue to grow in complexity and size. As applications struggle to make use of increasingly heterogeneous compute nodes, maintaining high efficiency (performance per watt) for the whole platform becomes a challenge. Alongside the growing complexity of scientific workloads, this extreme heterogeneity is also an opportunity: as applications dynamically undergo variations in workload, due to phases or data/compute movement between devices, one can dynamically adjust power across compute elements to save energy without impacting performance. With an aim toward an autonomous and dynamic power management strategy for current and future HPC architectures, this paper explores the use of control theory for the design of a dynamic power regulation method. Structured as a feedback loop, our approach-which is novel in computing resource management-consists of periodically monitoring application progress and choosing at runtime a suitable power cap for processors. Thanks to a preliminary offline identification process, we derive a model of the dynamics of the system and a proportional-integral (PI) controller. We evaluate our approach on top of an existing resource management framework, the Argo Node Resource Manager, deployed on several clusters of Grid'5000, using a standard memory-bound HPC benchmark.
翻译:生产高性能计算机系统在复杂性和规模上继续增长。 应用程序在努力利用日益多样化的计算节点时,要对整个平台保持高效率(每瓦特的性能)已成为一项挑战。 在科学工作量日益复杂的同时,这种极端异质性也是一个机会:由于各个阶段或数据/计算装置之间的移动,应用程序在工作量方面动态地发生变化,因此可以动态地调整计算各元素的能量,以便在不影响性能的情况下节省能源。 本文的目的是为当前和未来的高电管结构制定自主和动态的电源管理战略,探讨使用控制理论来设计动态电源调节方法。 作为一种反馈循环,我们的方法在计算资源管理方面是新颖的,即定期监测应用进度和在运行时选择合适的处理器电源封套。 由于初步的离线识别过程,我们得出了一个系统动态模型和一个成比例式的不均匀控制器。 我们用现有资源管理框架的顶端评估了我们的方法,即Argo Node资源管理员,部署在Grig'500的数组中,使用标准的存储基准。