Pilots operating aircraft in un-towered airspace rely on their situational awareness and prior knowledge to predict the future trajectories of other agents. These predictions are conditioned on the past trajectories of other agents, agent-agent social interactions and environmental context such as airport location and weather. This paper provides a dataset, $\textit{TrajAir}$, that captures this behaviour in a non-towered terminal airspace around a regional airport. We also present a baseline socially-aware trajectory prediction algorithm, $\textit{TrajAirNet}$, that uses the dataset to predict the trajectories of all agents. The dataset is collected for 111 days over 8 months and contains ADS-B transponder data along with the corresponding METAR weather data. The data is processed to be used as a benchmark with other publicly available social navigation datasets. To the best of authors' knowledge, this is the first 3D social aerial navigation dataset thus introducing social navigation for autonomous aviation. $\textit{TrajAirNet}$ combines state-of-the-art modules in social navigation to provide predictions in a static environment with a dynamic context. Both the $\textit{TrajAir}$ dataset and $\textit{TrajAirNet}$ prediction algorithm are open-source. The dataset, codebase, and video are available at https://theairlab.org/trajair/, https://github.com/castacks/trajairnet, and https://youtu.be/elAQXrxB2gw respectively.
翻译:在非封闭空域运行飞机的飞行员取决于他们的情况意识和先前的知识,以预测其他代理人的未来轨迹。这些预测取决于其他代理人、代理代理社会互动和环境环境的过去轨迹,如机场位置和天气。本文提供了一套数据集,$\textit{TrajAir}$,该数据集在区域机场周围非封闭的终端空域中记录了这种行为。我们还提供了一个社会认知轨迹预测的基线算法,$\textit{TrajAirNet}$,该模型使用数据集来预测所有代理人的轨迹。数据集在8个月中收集了111天,并载有ADS-B转发器数据以及相应的METAR天气数据。这些数据被处理后用作其他公开可用的社会导航数据集的基准。据作者所知,这是第一个3D社会航空开放数据数据集,从而引入自主航空的社会导航。 $\\ textlicalitalital{TrajAirNet} 将州-Artal-Artair 模型与 Stampal-alviewal 数据导航环境提供。 $Aral_Arallivial sal salalalalals/revalislation/rals dal sal sal sals dals/ dalview/rvial sals dal 和 dalvialvials a dalvialvials dalvials) 和 dalview dalvialvialisalisalisalisalvialvialisalisalisals)。