Predictive maintenance is used in industrial applications to increase machine availability and optimize cost related to unplanned maintenance. In most cases, predictive maintenance applications use output from sensors, recording physical phenomenons such as temperature or vibration which can be directly linked to the degradation process of the machine. However, in some applications, outputs from sensors are not available, and event logs generated by the machine are used instead. We first study the approaches used in the literature to solve predictive maintenance problems and present a new public dataset containing the event logs from 156 machines. After this, we define an evaluation framework for predictive maintenance systems, which takes into account business constraints, and conduct experiments to explore suitable solutions, which can serve as guidelines for future works using this new dataset.
翻译:在工业应用中使用了预测性维护,以增加机器的可用性,优化与计划外维护有关的成本;在多数情况下,预测性维护应用使用传感器的产出,记录与机器退化过程直接相关的温度或振动等物理现象,但在一些应用中,没有传感器的产出,而是使用了机器产生的事件日志;我们首先研究文献中使用的解决预测性维护问题的方法,并提出了包含156台机器事件日志的新的公共数据集;在此之后,我们确定了预测性维护系统的评价框架,其中考虑到商业制约因素,并进行了探索适当解决办法的实验,这些实验可以作为利用这一新数据集进行未来工作的指南。