User profiling has long been an important problem that investigates user interests in many real applications. Some recent works regard users and their interacted objects as entities of a graph and turn the problem into a node classification task. However, they neglect the difference of distinct interaction types, e.g. user clicks an item v.s.user purchases an item, and thus cannot incorporate such information well. To solve these issues, we propose to leverage the relation-aware heterogeneous graph method for user profiling, which also allows capturing significant meta relations. We adopt the query, key, and value mechanism in a transformer fashion for heterogeneous message passing so that entities can effectively interact with each other. Via such interactions on different relation types, our model can generate representations with rich information for the user profile prediction. We conduct experiments on two real-world e-commerce datasets and observe a significant performance boost of our approach.
翻译:用户特征分析长期以来一直是一个重要的问题,它调查了许多实际应用程序中的用户利益。最近的一些作品将用户及其互动对象视为图表的实体,并将问题转化为节点分类任务。然而,它们忽略了不同互动类型的差异,例如用户点击一项项目对用户购买一项项目,因此无法很好地纳入这些信息。为了解决这些问题,我们提议利用有关系、有差异的图表方法来进行用户特征分析,这也能够捕捉重要的元关系。我们采用查询、关键和价值机制,以变压器方式传递不同的信息,以便实体能够有效地相互交流。通过这种在不同关系类型上的相互作用,我们的模型可以产生丰富的信息,用于用户概况预测。我们在两个真实的电子商务数据集上进行实验,并观察我们方法的显著性能增强。