Large Language Models (LLMs) have demonstrated exceptional performance in biochemical tasks, especially the molecule caption translation task, which aims to bridge the gap between molecules and natural language texts. However, previous methods in adapting LLMs to the molecule-caption translation task required extra domain-specific pre-training stages, suffered weak alignment between molecular and textual spaces, or imposed stringent demands on the scale of LLMs. To resolve the challenges, we propose In-Context Molecule Adaptation (ICMA), as a new paradigm allowing LLMs to learn the molecule-text alignment from context examples via In-Context Molecule Tuning. Specifically, ICMA incorporates the following three stages: Hybrid Context Retrieval, Post-retrieval Re-ranking, and In-context Molecule Tuning. Initially, Hybrid Context Retrieval utilizes BM25 Caption Retrieval and Molecule Graph Retrieval to retrieve similar informative context examples. Additionally, Post-retrieval Re-ranking is composed of Sequence Reversal and Random Walk selection to further improve the quality of retrieval results. Finally, In-Context Molecule Tuning unlocks the in-context learning and reasoning capability of LLMs with the retrieved examples and adapts the parameters of LLMs for better alignment between molecules and texts. Experimental results demonstrate that ICMA can empower LLMs to achieve state-of-the-art or comparable performance without extra training corpora and intricate structures, showing that LLMs are inherently in-context molecule learners.
翻译:暂无翻译