A web crawler is a system designed to collect web pages, and efficient crawling of new pages requires appropriate algorithms. While website features such as XML sitemaps and the frequency of past page updates provide important clues for accessing new pages, their universal application across diverse conditions is challenging. In this study, we propose a method to efficiently collect new pages by classifying web pages into two types, "Index Pages" and "Content Pages," using a large language model (LLM), and leveraging the classification results to select index pages as starting points for accessing new pages. We construct a dataset with automatically annotated web page types and evaluate our approach from two perspectives: the page type classification performance and coverage of new pages. Experimental results demonstrate that the LLM-based method outperformed baseline methods in both evaluation metrics.


翻译:网络爬虫是一种旨在收集网页的系统,高效爬取新页面需要合适的算法。虽然XML站点地图和过往页面更新频率等网站特征为访问新页面提供了重要线索,但其在不同条件下的普适性应用仍具挑战性。本研究提出一种方法,通过使用大型语言模型(LLM)将网页分类为“索引页”和“内容页”两种类型,并利用分类结果选择索引页作为访问新页面的起点,从而高效收集新页面。我们构建了一个自动标注网页类型的数据集,并从页面类型分类性能和新页面覆盖率两个角度评估了所提方法。实验结果表明,基于LLM的方法在两项评估指标上均优于基线方法。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员