Digital contact tracing of an infected person, testing the possible infection for the contacted persons, and isolation play a crucial role in alleviating the outbreak. Here, we design a dynamic graph streaming algorithm that can trace the contacts under the control of the Public Health Authorities (PHA). Our algorithm receives proximity data from the mobile devices as contact data streams and uses a sliding window model to construct a dynamic contact graph sketch. Prominently, we introduce the edge label of the contact graph as a binary contact vector, which acts like a sliding window and holds the latest D days (incubation period) of temporal social interactions. Notably, the algorithm prepares the direct and indirect (multilevel) contact list from the contact graph sketch for a given set of infected persons. Finally, the algorithm also uses a disjoint set data structure to construct the infection pathways for the trace list. The present study offers the design of algorithms with underlying data structures for digital contact trace relevant to the proximity data produced by Bluetooth enabled mobile devices. Our analysis reveals that for COVID-19 close contact parameters, the storage space requires maintaining the contact graph of ten million users; having 14 days of close contact data in the PHA server takes 55 Gigabytes of memory and preparation of the contact list for a given set of the infected person depends on the size of the infected list. Our centralized digital contact tracing framework can also be applicable for other relevant diseases parameterized by an incubation period and proximity duration of contacts.


翻译:我们设计了一个动态图表流算法,可以追踪公共卫生当局(PHA)控制下的接触。我们的算法从移动设备接收近距离数据,作为联系数据流,并使用滑动窗口模型来构建动态联系图图草图。我们明显地将联系图的边缘标签作为二进制接触矢量,它像滑动窗口一样,保持最新的D日(孵化期)时间性社会互动。值得注意的是,算法从接触图草图中为特定一组受感染者准备直接和间接(多级)接触列表。最后,算法还使用不连接数据集结构来构建追踪列表的感染途径。本研究提供了与蓝牙启用的移动设备产生的接近数据相关的数字联系跟踪基本数据结构的设计。我们的分析显示,对于COVID-19的近距离参数,存储空间需要保持1,000万用户的接触图;在受感染者接触的近距离图草图中,有14天的离线性数据结构,还要根据受感染者的中央联系框架,为受感染者进行55天的跟踪。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年2月4日
Arxiv
8+阅读 · 2020年10月9日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员