Aspect-Based Sentiment Analysis (ABSA) has emerged as a critical tool for extracting fine-grained sentiment insights from user-generated content, particularly in e-commerce and social media domains. However, research on Bangla ABSA remains significantly underexplored due to the absence of comprehensive datasets and specialized frameworks for triplet extraction in this language. This paper introduces BanglaASTE, a novel framework for Aspect Sentiment Triplet Extraction (ASTE) that simultaneously identifies aspect terms, opinion expressions, and sentiment polarities from Bangla product reviews. Our contributions include: (1) creation of the first annotated Bangla ASTE dataset containing 3,345 product reviews collected from major e-commerce platforms including Daraz, Facebook, and Rokomari; (2) development of a hybrid classification framework that employs graph-based aspect-opinion matching with semantic similarity techniques; and (3) implementation of an ensemble model combining BanglaBERT contextual embeddings with XGBoost boosting algorithms for enhanced triplet extraction performance. Experimental results demonstrate that our ensemble approach achieves superior performance with 89.9% accuracy and 89.1% F1-score, significantly outperforming baseline models across all evaluation metrics. The framework effectively addresses key challenges in Bangla text processing including informal expressions, spelling variations, and data sparsity. This research advances the state-of-the-art in low-resource language sentiment analysis and provides a scalable solution for Bangla e-commerce analytics applications.


翻译:方面级情感分析已成为从用户生成内容(尤其在电商和社交媒体领域)提取细粒度情感洞察的关键工具。然而,由于缺乏针对孟加拉语的三元组提取的全面数据集和专用框架,该语言的方面级情感分析研究仍显著不足。本文提出BanglaASTE,一种用于方面情感三元组提取的新框架,可同时从孟加拉语产品评论中识别方面术语、观点表达和情感极性。我们的贡献包括:(1)创建首个标注的孟加拉语ASTE数据集,包含从Daraz、Facebook和Rokomari等主流电商平台收集的3,345条产品评论;(2)开发一种混合分类框架,采用基于图表的方面-观点匹配与语义相似度技术;(3)实现集成模型,将BanglaBERT上下文嵌入与XGBoost提升算法结合以增强三元组提取性能。实验结果表明,我们的集成方法以89.9%的准确率和89.1%的F1分数取得优越性能,在所有评估指标上显著优于基线模型。该框架有效应对了孟加拉语文本处理中的关键挑战,包括非正式表达、拼写变体和数据稀疏性。本研究推动了低资源语言情感分析的前沿进展,并为孟加拉语电商分析应用提供了可扩展的解决方案。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员