We will show that if a proper complete CAT(0) space X has a visual boundary homeomorphic to the join of two Cantor sets, and X admits a geometric group action by a group containing a subgroup isomorphic to Z^2, then its Tits boundary is the spherical join of two uncountable discrete sets. If X is geodesically complete, then X is a product, and the group has a finite index subgroup isomorphic to a lattice in the product of two isometry groups of bounded valence bushy trees.
翻译:我们将显示,如果一个适当的完整的 CAT(0) 空间X 在两个Cantor 组合中具有直观边界正态, 而X 承认一组包含一个亚组的几何组行动, 该分组包含一个亚组的异形到 ⁇ 2, 那么它的Tits 边界是两个无法计算离散的组合的球形组合。 如果X 具有大地学完整性, 那么X 是一个产品, 并且该组有一个有限的指数分组, 与两组交界的valence 树丛树的产物中的线状相近。