In this paper, the minimization of the weighted sum average age of information (AoI) in a two-source status update communication system is studied. Two independent sources send update packets to a common destination node in a time-slotted manner under the limit of maximum retransmission rounds. Different multiple access schemes, i.e., orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) are exploited here over a block-fading multiple access channel (MAC). Constrained Markov decision process (CMDP) problems are formulated to describe the AoI minimization problems considering both transmission schemes. The Lagrangian method is utilised to convert CMDP problems to unconstraint Markov decision process (MDP) problems and corresponding algorithms to derive the power allocation policies are obtained. On the other hand, for the case of unknown environments, two online reinforcement learning approaches considering both multiple access schemes are proposed to achieve near-optimal age performance. Numerical simulations validate the improvement of the proposed policy in terms of weighted sum AoI compared to the fixed power transmission policy, and illustrate that NOMA is more favorable in case of larger packet size.
翻译:在本文中,研究了将两个来源状态更新通信系统中的信息平均年龄加权和平均年龄(AoI)的最小化问题。两个独立来源在最大再传输回合的限制下,以时间分期的方式向共同目的地节点发送更新包。获得不同的多重访问计划,即正方形多重访问(OMA)和非正方形多重访问(NOMA),在这里通过一个块状式多进入通道(MAC)加以利用。对马尔科夫决定程序(CMDP)进行控制,以描述考虑到两种传输计划而使AoI问题最小化的问题。Lagrangian方法用于将CMDP问题转换为不严格的Markov决策程序(MDP)和相应的算法,以得出权力分配政策。另一方面,对于未知环境的情况,提出了两种考虑两种多重访问计划的在线强化学习方法,以达到接近最理想的年龄性能。Numericalimical 模拟证实了在加权AoI与固定电力传输政策相比,拟议政策在加权总和最大性AOMAM 中改进了拟议政策,并表明NOMA更有利规模的案例。