In rendez-vous protocols an arbitrarily large number of indistinguishable finite-state agents interact in pairs. The cut-off problem asks if there exists a number $B$ such that all initial configurations of the protocol with at least $B$ agents in a given initial state can reach a final configuration with all agents in a given final state. In a recent paper (Horn and Sangnier, CONCUR 2020), Horn and Sangnier prove that the cut-off problem is equivalent to the Petri net reachability problem for protocols with a leader, and in EXPSPACE for leaderless protocols. Further, for the special class of symmetric protocols they reduce these bounds to PSPACE and NP, respectively. The problem of lowering these upper bounds or finding matching lower bounds is left open. We show that the cut-off problem is P-complete for leaderless protocols, NP-complete for symmetric protocols with a leader, and in NC for leaderless symmetric protocols, thereby solving all the problems left open in (Horn and Sangnier, CONCUR 2020). Further, we also consider a variant of the cut-off problem suggested in (Horn and Sangnier, CONCUR 2020) and prove that that variant is P-complete for leaderless protocols and NL-complete for leaderless symmetric protocols.
翻译:在共和协议中,任意存在大量无法区分的有限国家代理人,它们彼此互动。禁产问题询问是否存在一个数目为$B$的数值,因此,在某个初始状态中,与至少为B$代理人的初始协议的所有初始配置都能够在某个特定最终状态中与所有代理人达成最终配置。在最近的一份文件(Horn和Sangnier,CONCUR 2020)中,Horn和Sangnier证明,禁产问题相当于与一个领导人达成协议的地势净可达性问题,以及在无领导人协议的EXPSPACE中,与无领导人协议的EXPSPACE 之间的净可达性问题。此外,对于特殊类的对称协议,它们是否将这些约束分别削减到PSPACE和NP。 降低这些上限或找到匹配的较低界限的问题尚未解决。 在最近的一份论文(Horn和Sangnier、CON-C)中,我们还认为,无领导人的对称协议和2020年标准化协议的变式(SAR-2020年,我们进一步认为,“无标准”和标准化规则”的变式,我们还认为,Sang-CR-Pro-Pro-Pro-com-Pro-com-com-com-com-com-com-com-com-com-commol-com-com-comm-commol-comm-commol-comm-comm-commol ex-commol-commismismmmmmmmmmmmmmmmmmol)。