Improving irradiance forecasting is critical to further increase the share of solar in the energy mix. On a short time scale, fish-eye cameras on the ground are used to capture cloud displacements causing the local variability of the electricity production. As most of the solar radiation comes directly from the Sun, current forecasting approaches use its position in the image as a reference to interpret the cloud cover dynamics. However, existing Sun tracking methods rely on external data and a calibration of the camera, which requires access to the device. To address these limitations, this study introduces an image-based Sun tracking algorithm to localise the Sun in the image when it is visible and interpolate its daily trajectory from past observations. We validate the method on a set of sky images collected over a year at SIRTA's lab. Experimental results show that the proposed method provides robust smooth Sun trajectories with a mean absolute error below 1% of the image size.
翻译:改进辐照预测对于进一步增加太阳在能源组合中的份额至关重要。 在很短的时间内,地面的鱼眼照相机被用来捕捉云层移位,造成发电的局部变异。由于太阳辐射大多直接来自太阳,当前预测方法在图像中的位置被用来作为解释云层覆盖动态的参考。然而,现有的太阳跟踪方法依赖于外部数据和摄影机的校准,这需要访问设备。为了解决这些限制,本研究采用了基于图像的太阳跟踪算法,以便在太阳可见时将太阳定位在图像中,并从以往的观测中推断出太阳的每日轨迹。我们验证了在SIRTA实验室收集的一套一年时间里收集的天空图像所使用的方法。实验结果显示,拟议方法提供了强大的光滑的太阳轨迹,其平均绝对误差低于图像大小的1%。