We study communication over a Multiple Access Channel (MAC) where users can possibly be adversarial. When all users are non-adversarial, we want their messages to be decoded reliably. When a user behaves adversarially, we require that the honest users' messages be decoded reliably. An adversarial user can mount an attack by sending any input into the channel rather than following the protocol. It turns out that the $2$-user MAC capacity region follows from the point-to-point Arbitrarily Varying Channel (AVC) capacity. For the $3$-user MAC in which at most one user may be malicious, we characterize the capacity region for deterministic codes and randomized codes (where each user shares an independent random secret key with the receiver). These results are then generalized for the $k$-user MAC where the adversary may control all users in one out of a collection of given subsets.


翻译:我们研究多存取频道(MAC)上的通信,用户可以在其中进行对抗性交流。当所有用户都是非对抗性对话时,我们希望他们的信息被可靠地解码。当用户行为对抗性对话时,我们要求诚实用户的信息被可靠地解码。一个对立用户可以通过向频道发送任何输入信息而不是遵循协议来发动攻击。结果显示,$2的用户MAC能力区域来自点对点的异位对话频道(AVC)能力。对于最多一个用户可能是恶意的3美元的用户MAC,我们描述确定代码和随机代码的能力区域(每个用户与接收者共享一个独立的随机秘密密钥 ) 。 然后,这些结果被普遍用于美元用户MAC(MAC), 对手可以从一个子集中控制所有用户。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年1月24日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员