Synaptic communication is based on a biological Molecular Communication (MC) system which may serve as a blueprint for the design of synthetic MC systems. However, the physical modeling of synaptic MC is complicated by the possible saturation of the molecular receiver caused by the competition of neurotransmitters (NTs) for postsynaptic receptors. Receiver saturation renders the system behavior nonlinear in the number of released NTs and is commonly neglected in existing analytical models. Furthermore, due to the ligands' competition for receptors (and vice versa), the individual binding events at the molecular receiver are in general statistically dependent and the binomial model for the statistics of the received signal does not apply. In this work, we propose a novel deterministic model for receptor saturation in terms of a state-space description based on an eigenfunction expansion of Fick's diffusion equation. The presented solution is numerically stable and computationally efficient. Employing the proposed deterministic model, we show that saturation at the molecular receiver reduces the peak-value of the expected received signal and accelerates the clearance of NTs as compared to the case when receptor occupancy is neglected. We further derive a statistical model for the received signal in terms of the hypergeometric distribution which accounts for the competition of NTs for receptors and the competition of receptors for NTs. The proposed statistical model reveals how the signal statistics are shaped by the number of released NTs, the number of receptors, and the binding kinetics of the receptors, respectively, in the presence of competition. We show that the impact of these parameters on the signal variance depends on the relative numbers of NTs and receptors. The accuracy of the proposed deterministic and statistical models is verified by particle-based computer simulations.


翻译:同步通信基于生物分子通信系统,该系统可作为合成MC系统设计的蓝图,然而,由于神经传输器(NTs)对后合成受体的竞争导致分子接收器可能饱和,合成MC的物理模型因分子接收器可能饱和而变得复杂。接收器饱和使系统的行为在释放的NT数量上非线性,并且在现有分析模型中通常被忽视。此外,由于离子体对受体(和反向)的竞争,分子接收器的单个约束性事件一般在统计上具有相对依赖性,而且所接收信号的统计的二进制模型不适用。在这项工作中,我们提出了一个新的确定性模型,用于感官控制Fick扩散方的扩张。这些模型提出的解决方案是数字稳定且具有计算效率。在使用拟议的确定性模型时,我们显示分子接收的信号接收器的信号的饱和性事件,在接受的Sentrations信号发布后,统计的信号发布时间将逐渐变现。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Nature 一周论文导读 | 2019 年 4 月 4 日
科研圈
7+阅读 · 2019年4月14日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
6+阅读 · 2018年11月29日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Nature 一周论文导读 | 2019 年 4 月 4 日
科研圈
7+阅读 · 2019年4月14日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员