Denoising diffusion probabilistic models (DDPMs) have emerged as competitive generative models yet brought challenges to efficient sampling. In this paper, we propose novel bilateral denoising diffusion models (BDDMs), which take significantly fewer steps to generate high-quality samples. From a bilateral modeling objective, BDDMs parameterize the forward and reverse processes with a score network and a scheduling network, respectively. We show that a new lower bound tighter than the standard evidence lower bound can be derived as a surrogate objective for training the two networks. In particular, BDDMs are efficient, simple-to-train, and capable of further improving any pre-trained DDPM by optimizing the inference noise schedules. Our experiments demonstrated that BDDMs can generate high-fidelity samples with as few as 3 sampling steps and produce comparable or even higher quality samples than DDPMs using 1000 steps with only 16 sampling steps (a 62x speedup).


翻译:在本文中,我们建议采用新的双边分解扩散模型(BDDM),这些模型为产生高质量的样品采取了少得多的步骤。从双边建模目标中,BDDMS将前方和反向过程分别用得分网络和排期网进行参数化。我们表明,比标准证据较低约束的新的较低约束线可以作为两个网络培训的替代目标,特别是,BDMS是高效的、简单的到培训的,并且能够通过优化推断噪音表来进一步改进任何预先培训过的DDPM。我们的实验表明,BDDMS可以产生高纤维性样品,只有3个取样步骤,并且只使用1 000个取样步骤(a 62x速度)比DDPMs产生可比或更高质量的样品。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
31+阅读 · 2021年6月24日
专知会员服务
50+阅读 · 2021年5月19日
专知会员服务
122+阅读 · 2021年4月29日
Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
18+阅读 · 2021年4月4日
专知会员服务
56+阅读 · 2021年2月27日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
图像处理:从 bilateral filter 到 HDRnet
极市平台
30+阅读 · 2019年8月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
10+阅读 · 2018年5月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月17日
Arxiv
0+阅读 · 2021年10月17日
Arxiv
7+阅读 · 2021年3月15日
Arxiv
21+阅读 · 2018年5月23日
VIP会员
相关VIP内容
专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
31+阅读 · 2021年6月24日
专知会员服务
50+阅读 · 2021年5月19日
专知会员服务
122+阅读 · 2021年4月29日
Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
18+阅读 · 2021年4月4日
专知会员服务
56+阅读 · 2021年2月27日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
图像处理:从 bilateral filter 到 HDRnet
极市平台
30+阅读 · 2019年8月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
10+阅读 · 2018年5月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年10月17日
Arxiv
0+阅读 · 2021年10月17日
Arxiv
7+阅读 · 2021年3月15日
Arxiv
21+阅读 · 2018年5月23日
Top
微信扫码咨询专知VIP会员