Semantic segmentation is an essential part of deep learning. In recent years, with the development of remote sensing big data, semantic segmentation has been increasingly used in remote sensing. Deep convolutional neural networks (DCNNs) face the challenge of feature fusion: very-high-resolution remote sensing image multisource data fusion can increase the network's learnable information, which is conducive to correctly classifying target objects by DCNNs; simultaneously, the fusion of high-level abstract features and low-level spatial features can improve the classification accuracy at the border between target objects. In this paper, we propose a multipath encoder structure to extract features of multipath inputs, a multipath attention-fused block module to fuse multipath features, and a refinement attention-fused block module to fuse high-level abstract features and low-level spatial features. Furthermore, we propose a novel convolutional neural network architecture, named attention-fused network (AFNet). Based on our AFNet, we achieve state-of-the-art performance with an overall accuracy of 91.7% and a mean F1 score of 90.96% on the ISPRS Vaihingen 2D dataset and an overall accuracy of 92.1% and a mean F1 score of 93.44% on the ISPRS Potsdam 2D dataset.
翻译:语义分解是深层学习的一个基本部分。近年来,随着遥感大数据的开发,在遥感中越来越多地使用语义分解。深发神经网络面临地貌融合的挑战:甚高分辨率遥感图像多源数据聚合可以增加网络的可学习信息,这有助于由DCNN对目标物体进行正确分类;同时,高层次抽象特征和低层次空间特征的融合可以提高目标物体之间的边界的分类准确性。在本文中,我们建议建立一个多路径编码结构,以提取多路径输入的特征,一个多路连接的多路连接式单元模块,一个多路连接多路连接式的多路连接式模块,以及一个精细化的注意力使用区块模块,以融合高层次抽象特征和低层次空间特征。此外,我们建议建立一个新型的革命神经网络结构,以受关注的网络(AFNet)命名。基于我们的AFNet,我们实现了艺术状态的性能,总体精确度达到91.7%,在ISP Vaset 1 和2POIS1中平均为92%的F1分级为91%的FISSet数据和平均为92%。