This paper presents X3D, a family of efficient video networks that progressively expand a tiny 2D image classification architecture along multiple network axes, in space, time, width and depth. Inspired by feature selection methods in machine learning, a simple stepwise network expansion approach is employed that expands a single axis in each step, such that good accuracy to complexity trade-off is achieved. To expand X3D to a specific target complexity, we perform progressive forward expansion followed by backward contraction. X3D achieves state-of-the-art performance while requiring 4.8x and 5.5x fewer multiply-adds and parameters for similar accuracy as previous work. Our most surprising finding is that networks with high spatiotemporal resolution can perform well, while being extremely light in terms of network width and parameters. We report competitive accuracy at unprecedented efficiency on video classification and detection benchmarks. Code will be available at: https://github.com/facebookresearch/SlowFast
翻译:本文介绍由高效视频网络组成的X3D, 这个高效视频网络在空间、时间、宽度和深度上逐步沿多个网络轴沿空间、时间、宽度和深度扩展一个微小的 2D 图像分类结构。 在机器学习的特征选择方法的启发下,采用了简单的一步一步的网络扩展方法,在每一步中扩展一个轴,从而实现对复杂交易的精确度。要将 X3D 扩展到一个特定的目标复杂度,我们就在向后缩缩缩进后逐步向前扩展。 X3D 实现了最先进的性能,同时需要4. 8x 和 5.5x 的增量和参数,以达到与以往工作相似的准确性。 我们最令人惊讶的发现是,在网络宽度和参数方面高度光亮度的网络能够运行良好。 我们在视频分类和检测基准上以前所未有的效率报告竞争性准确性。 代码将在以下网址上公布: https://github.com/facebourseresearch/SlowFast: