This paper presents our research regarding spoiler detection in reviews. In this use case, we describe the method of fine-tuning and organizing the available text-based model tasks with the latest deep learning achievements and techniques to interpret the models' results. Until now, spoiler research has been rarely described in the literature. We tested the transfer learning approach and different latest transformer architectures on two open datasets with annotated spoilers (ROC AUC above 81\% on TV Tropes Movies dataset, and Goodreads dataset above 88\%). We also collected data and assembled a new dataset with fine-grained annotations. To that end, we employed interpretability techniques and measures to assess the models' reliability and explain their results.
翻译:本文件介绍了我们在审查中探测破坏器的研究情况。在这个使用案例中,我们描述了微调和组织现有基于文本的模型任务的方法,以及最新的深层学习成就和解释模型结果的技术。到目前为止,破坏器研究在文献中很少被描述。我们用附加说明的破坏器测试了两个开放数据集的转移学习方法和不同的最新变压器结构(在电视《Tropes电影》数据集上超过81°CAU和88°CGoodread数据集上超过81°C)。我们还收集了数据,并收集了带有精细的注释的新数据集。为此,我们采用了可解释技术和措施来评估模型的可靠性并解释其结果。