This paper proposes a new defense approach for counteracting state-of-the-art white and black-box adversarial attack algorithms. Our approach fits into the implicit reactive defense algorithm category since it does not directly manipulate the potentially malicious input signals. Instead, it reconstructs a similar signal with a synthesized spectrogram using a cyclic generative adversarial network. This cyclic framework helps to yield a stable generative model. Finally, we feed the reconstructed signal into the speech-to-text model for transcription. The conducted experiments on targeted and non-targeted adversarial attacks developed for attacking DeepSpeech, Kaldi, and Lingvo models demonstrate the proposed defense's effectiveness in adverse scenarios.
翻译:本文提出一种新的防御方法,用于对抗最先进的白色和黑箱对抗性攻击算法。 我们的方法符合隐性反应性防御算法类别, 因为它没有直接操纵潜在的恶意输入信号。 相反, 它利用循环基因对抗性网络, 以合成光谱重建类似的信号。 这个循环框架有助于形成稳定的基因化模型。 最后, 我们将重建的信号输入语音对文本的抄录模型中。 对为攻击DeepSpeech、Kaldi和Lingvo开发的定向和非有针对性的对抗性攻击进行了实验, 展示了拟议防御在不利情景中的效果。