We address the problem of efficiently organizing search over very large trees, which arises in many applications ranging from autonomous driving to aerial vehicles. Here, we are motivated by off-road autonomy, where real-time planning is essential. Classical approaches use graphs of motion primitives and exploit dominance to mitigate the curse of dimensionality and prune expansions efficiently. However, for complex dynamics, repeatedly solving two-point boundary-value problems makes graph construction too slow for fast kinodynamic planning. Hybrid A* (HA*) addressed this challenge by searching over a tree of motion primitives and introducing approximate pruning using a grid-based dominance check. However, choosing the grid resolution is difficult: too coarse risks failure, while too fine leads to excessive expansions and slow planning. We propose Incremental Generalized Hybrid A* (IGHA*), an anytime tree-search framework that dynamically organizes vertex expansions without rigid pruning. IGHA* provably matches or outperforms HA*. For both on-road kinematic and off-road kinodynamic planning queries for a car-like robot, variants of IGHA* use 6x fewer expansions to the best solution compared to an optimized version of HA* (HA*M, an internal baseline). In simulated off-road experiments in a high-fidelity simulator, IGHA* outperforms HA*M when both are used in the loop with a model predictive controller. We demonstrate real-time performance both in simulation and on a small-scale off-road vehicle, enabling fast, robust planning under complex dynamics. Website: https://personalrobotics.github.io/IGHAStar/


翻译:本文研究如何高效组织对超大规模树的搜索问题,该问题广泛存在于从自动驾驶到飞行器等多种应用场景。我们主要关注越野自主导航领域,其中实时规划至关重要。经典方法利用运动基元图并通过支配性来缓解维度灾难并高效剪枝扩展。然而,对于复杂动力学系统,反复求解两点边值问题导致图构建过程过于缓慢,难以满足快速运动动力学规划需求。混合A*算法通过搜索运动基元树并引入基于网格的近似支配性检查来解决这一挑战。但网格分辨率的选择面临两难:过粗可能导致规划失败,过细则会引起扩展爆炸和规划速度下降。我们提出增量广义混合A*算法,这是一种可动态组织顶点扩展而无须刚性剪枝的任意时间树搜索框架。理论证明IGHA*算法性能不低于或优于传统HA*算法。针对类汽车机器人的道路运动学与越野运动动力学规划问题,IGHA*的多种变体在获得最优解时所需的扩展次数比优化版HA*算法减少6倍。在高保真模拟器的越野仿真实验中,当IGHA*与HA*均与模型预测控制器闭环运行时,IGHA*表现更优。我们在仿真环境和小型越野车辆上均实现了实时性能,证明了该算法在复杂动力学条件下实现快速鲁棒规划的能力。项目网站:https://personalrobotics.github.io/IGHAStar/

0
下载
关闭预览

相关内容

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数。 来自维基百科: 算法
【AAAI2023】基于Dirichlet元模型的事后不确定性学习
专知会员服务
16+阅读 · 2022年12月16日
【CVPR2022】提示分布学习
专知会员服务
31+阅读 · 2022年5月17日
【NeurIPS2021】用于视频分割的密集无监督学习
专知会员服务
15+阅读 · 2021年11月14日
专知会员服务
12+阅读 · 2021年6月20日
专知会员服务
29+阅读 · 2020年10月2日
从最大似然到EM算法:一致的理解方式
PaperWeekly
19+阅读 · 2018年3月19日
图上的归纳表示学习
科技创新与创业
23+阅读 · 2017年11月9日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
23+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月17日
VIP会员
相关VIP内容
【AAAI2023】基于Dirichlet元模型的事后不确定性学习
专知会员服务
16+阅读 · 2022年12月16日
【CVPR2022】提示分布学习
专知会员服务
31+阅读 · 2022年5月17日
【NeurIPS2021】用于视频分割的密集无监督学习
专知会员服务
15+阅读 · 2021年11月14日
专知会员服务
12+阅读 · 2021年6月20日
专知会员服务
29+阅读 · 2020年10月2日
相关资讯
从最大似然到EM算法:一致的理解方式
PaperWeekly
19+阅读 · 2018年3月19日
图上的归纳表示学习
科技创新与创业
23+阅读 · 2017年11月9日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
23+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员