Modern Automatic Speech Recognition (ASR) systems often use a portfolio of domain-specific models in order to get high accuracy for distinct user utterance types across different devices. In this paper, we propose an innovative approach that integrates the different per-domain per-device models into a unified model, using a combination of domain embedding, domain experts, mixture of experts and adversarial training. We run careful ablation studies to show the benefit of each of these innovations in contributing to the accuracy of the overall unified model. Experiments show that our proposed unified modeling approach actually outperforms the carefully tuned per-domain models, giving relative gains of up to 10% over a baseline model with negligible increase in the number of parameters.
翻译:现代自动语音识别(ASR)系统经常使用一系列特定域名模型,以便在不同装置的不同用户发声类型中取得高度准确性。 在本文中,我们提出一种创新办法,将不同的每个域的每个单元模型整合成一个统一的模型,使用域嵌入、域专家、专家混合和对抗性培训的组合。我们进行了仔细的通货膨胀研究,以显示这些创新在提高整个统一模型的准确性方面的益处。实验表明,我们拟议的统一模型方法实际上优于仔细调整的每个域名模型,使基准模型的相对收益高达10%,参数数略有增加。