We present a novel static analysis technique to derive higher moments for program variables for a large class of probabilistic loops with potentially uncountable state spaces. Our approach is fully automatic, meaning it does not rely on externally provided invariants or templates. We employ algebraic techniques based on linear recurrences and introduce program transformations to simplify probabilistic programs while preserving their statistical properties. We develop power reduction techniques to further simplify the polynomial arithmetic of probabilistic programs and define the theory of moment-computable probabilistic loops for which higher moments can precisely be computed. Our work has applications towards recovering probability distributions of random variables and computing tail probabilities. The empirical evaluation of our results demonstrates the applicability of our work on many challenging examples.
翻译:我们提出了一个创新的静态分析技术,为具有潜在不可预见状态空间的大规模概率循环程序变量获取更高的时间。 我们的方法是完全自动的,意味着它不依赖外部提供的变异性或模板。 我们采用基于线性复现的代数技术,并引入程序变换,以简化概率方案,同时保留其统计特性。 我们开发了减能技术,以进一步简化概率方案多数值计算,并定义了可以精确计算更高时段的瞬间可计算概率循环理论。 我们的工作应用了恢复随机变量概率分布和计算尾部概率的应用程序。 我们对结果的实证评估表明,我们的工作适用于许多具有挑战性的例子。