This paper presents a range-aided LiDAR-inertial multi-vehicle mapping system (RaLI-Multi). Firstly, we design a multi-metric weights LiDAR-inertial odometry by fusing observations from an inertial measurement unit (IMU) and a light detection and ranging sensor (LiDAR). The degenerate level and direction are evaluated by analyzing the distribution of normal vectors of feature point clouds and are used to activate the degeneration correction module in which range measurements correct the pose estimation from the degeneration direction. We then design a multi-vehicle mapping system in which a centralized vehicle receives local maps of each vehicle and range measurements between vehicles to optimize a global pose graph. The global map is broadcast to other vehicles for localization and mapping updates, and the centralized vehicle is dynamically fungible. Finally, we provide three experiments to verify the effectiveness of the proposed RaLI-Multi. The results show its superiority in degeneration environments
翻译:本文介绍一个有射线辅助的LiDAR-内皮多车辆测绘系统(RaLI-Multi),首先,我们设计一个多度重量的LiDAR-内皮异形测量仪,通过从惯性测量单位(IMU)和光探测和测距传感器(LiDAR)进行阻断观测,设计一个多度重量的LiDAR-内皮异形测量仪,并设计一个光探测和测距传感器(LiDAR),通过分析地点云的正常矢量分布来评估退化水平和方向,并用于启动变形校正模块,在这种模块中,测距测量能够纠正从变形方向作出的估计。然后,我们设计一个多载体测绘系统,在其中集中的车辆接收每部车辆的地图和车辆之间的测距范围测量,以优化全球表面图。全球地图被广播给其他车辆,以便进行本地化和绘图更新,中央载体飞行器是动态可互换的。最后,我们提供了三个实验,以核查拟议的拉利-穆尔蒂的功效。结果显示其在变形环境中的优越性。</s>