Sequential Recommendation aims to recommend items that a target user will interact with in the near future based on the historically interacted items. While modeling temporal dynamics is crucial for sequential recommendation, most of the existing studies concentrate solely on the user side while overlooking the sequential patterns existing in the counterpart, i.e., the item side. Although a few studies investigate the dynamics involved in the dual sides, the complex user-item interactions are not fully exploited from a global perspective to derive dynamic user and item representations. In this paper, we devise a novel Dynamic Representation Learning model for Sequential Recommendation (DRL-SRe). To better model the user-item interactions for characterizing the dynamics from both sides, the proposed model builds a global user-item interaction graph for each time slice and exploits time-sliced graph neural networks to learn user and item representations. Moreover, to enable the model to capture fine-grained temporal information, we propose an auxiliary temporal prediction task over consecutive time slices based on temporal point process. Comprehensive experiments on three public real-world datasets demonstrate DRL-SRe outperforms the state-of-the-art sequential recommendation models with a large margin.
翻译:顺序建议旨在建议目标用户根据历史互动项目在近期内根据历史互动项目进行互动的项目。虽然模拟时间动态对于顺序建议至关重要,但大多数现有研究只集中在用户方面,而忽略了对应方即项目方面现有的顺序模式。虽然有几项研究调查了两侧的动态,但复杂的用户-项目互动并没有从全球角度充分利用,以获得动态用户和项目演示。在本文件中,我们为顺序建议(DRL-SRe)设计了一个新的动态代表学习模型。为了更好地模拟用户-项目互动,将双方的动态定性,拟议的模型为每个切片建立一个全球用户-项目互动图,并利用有时间标记的图形神经网络来学习用户和项目演示。此外,为了使模型能够捕捉精细微的时间信息,我们提议根据时间点进程连续进行一个辅助时间预测任务。对三个公共真实数据集进行了全面实验,展示了DRL-SReperformal-latial 建模。