A Chen generating series, along a path and with respect to $m$ differential forms,is a noncommutative series on $m$ letters and with coefficients which are holomorphic functionsover a simply connected manifold in other words a series with variable (holomorphic) coefficients.Such a series satisfies a first order noncommutative differential equation which is considered, bysome authors, as the universal differential equation, (i.e.) universality can beseen by replacing each letter by constant matrices (resp. analytic vector fields)and then solving a system of linear (resp. nonlinear) differential equations.Via rational series, on noncommutative indeterminates and with coefficients in rings, andtheir non-trivial combinatorial Hopf algebras, we give the first step of a noncommutativePicard-Vessiot theory and we illustrate it with the case of linear differential equationswith singular regular singularities thanks to the universal equation previously mentioned.
翻译:Chen 生成序列,沿一条路径,并针对美元差异形式,是一个非互换序列,以美元字母和系数计算,以美元为单位,用全局函数转换成一个简单的连接方块,换句话说,就是一个带有变数(异形)系数的序列。Such a系列满足了第一个顺序的非混合差异方程式,被一些作者认为是通用差异方程式(即)普遍性,办法是用恒定基体(重复分析矢量字段)取代每个字母,然后解决一个线性(重复非线性)差异方程式系统。 Via 理性序列,关于非混合的不确定因素和圆圈中的系数,以及这些非三角组合的Hopfgebras,我们给出了非组合式Picard-Vessiot理论的第一个步骤,我们用线性差异方程式的例子来说明这一点,因为前面提到的通用方程式是单一的普通奇异方方程式。