Industrial control systems (ICSs) are facing increasing cyber-physical attacks that can cause catastrophes in the physical system. Efficient anomaly detection models in the industrial sensor networks are essential for enhancing ICS reliability and security, due to the sensor data is related to the operational state of the ICS. Considering the limited availability of computing resources, this paper proposes a hybrid anomaly detection approach in cloud-edge collaboration industrial sensor networks. The hybrid approach consists of sensor data detection models deployed at the edges and a sensor data analysis model deployed in the cloud. The sensor data detection model based on Gaussian and Bayesian algorithms can detect the anomalous sensor data in real-time and upload them to the cloud for further analysis, filtering the normal sensor data and reducing traffic load. The sensor data analysis model based on Graph convolutional network, Residual algorithm and Long short-term memory network (GCRL) can effectively extract the spatial and temporal features and then identify the attack precisely. The proposed hybrid anomaly detection approach is evaluated using a benchmark dataset and baseline anomaly detection models. The experimental results show that the proposed approach can achieve an overall 11.19% increase in Recall and an impressive 14.29% improvement in F1-score, compared with the existing models.
翻译:工业控制系统(ICS)正面临越来越多的网络物理攻击,这些攻击可能会在物理系统中造成灾难。工业传感器网络的有效异常探测模型对于加强ICS的可靠性和安全性至关重要,因为传感器数据与ICS的运行状态有关。考虑到计算资源有限,本文件提议在云端合作工业传感器网络中采用混合异常探测方法。混合方法包括部署在边缘的传感器数据探测模型和部署在云层的传感器数据分析模型。基于高山和巴耶西亚算法的传感器数据探测模型可以实时探测异常传感器数据并将其上传到云层,以便进一步分析、过滤正常传感器数据并减少交通负荷。基于图变网络、残余算法和长短期内存网络的传感器数据分析模型可以有效地提取空间和时间特征,然后准确地确定攻击。拟议的混合异常探测方法将使用基准数据集和基线异常探测模型进行评估。实验结果显示,拟议的方法可以实现总体11.19%的异常传感器数据数据数据数据数据,并上载云层,以进一步分析、过滤正常传感器数据并减少交通量负荷负荷量。基于图图图图图的传感器分析模型的传感器分析模型可有效提取出空间特征,然后精确确定攻击。