We study the classical coalition structure generation (CSG) problem and compare the anytime behavior of three algorithmic paradigms: dynamic programming (DP), MILP branch-and-bound, and sparse relaxations based on greedy or $l_1$-type methods. Under a simple random "sparse synergy" model for coalition values, we prove that sparse relaxations recover coalition structures whose welfare is arbitrarily close to optimal in polynomial time with high probability. In contrast, broad classes of DP and MILP algorithms require exponential time before attaining comparable solution quality. This establishes a rigorous probabilistic anytime separation in favor of sparse relaxations, even though exact methods remain ultimately optimal.
翻译:本文研究经典的联盟结构生成问题,并比较了三种算法范式的即时求解性能:动态规划、混合整数线性规划分支定界法,以及基于贪心或$l_1$范数方法的稀疏松弛算法。在联盟价值服从简单随机"稀疏协同"模型的假设下,我们证明稀疏松弛算法能以高概率在多项式时间内恢复社会福利任意接近最优的联盟结构。相比之下,动态规划和混合整数线性规划的广泛算法类别需要指数时间才能达到相当的求解质量。这为稀疏松弛算法建立了严格的概率性即时性能优势,尽管精确求解方法最终仍能获得最优解。