Multisensory object-centric perception, reasoning, and interaction have been a key research topic in recent years. However, the progress in these directions is limited by the small set of objects available -- synthetic objects are not realistic enough and are mostly centered around geometry, while real object datasets such as YCB are often practically challenging and unstable to acquire due to international shipping, inventory, and financial cost. We present ObjectFolder, a dataset of 100 virtualized objects that addresses both challenges with two key innovations. First, ObjectFolder encodes the visual, auditory, and tactile sensory data for all objects, enabling a number of multisensory object recognition tasks, beyond existing datasets that focus purely on object geometry. Second, ObjectFolder employs a uniform, object-centric, and implicit representation for each object's visual textures, acoustic simulations, and tactile readings, making the dataset flexible to use and easy to share. We demonstrate the usefulness of our dataset as a testbed for multisensory perception and control by evaluating it on a variety of benchmark tasks, including instance recognition, cross-sensory retrieval, 3D reconstruction, and robotic grasping.
翻译:近年来,多感知天体的认知、推理和互动一直是一个关键的研究专题。然而,这些方向的进展受到现有小系列物体的限制 -- -- 合成物体不够现实,而且大多以几何为主,而YCB等真实物体数据集由于国际航运、库存和财政成本,往往在实际中具有挑战性和不稳定性,难以获取。我们展示了由100个虚拟化物体组成的数据集,该数据集以两种关键创新方法应对这两个挑战。首先,对象Folder为所有物体的视觉、听觉和触觉感官数据编码,使得许多多感知对象识别任务超出完全以物体几何为主的现有数据集。第二,对象Folder对每个物体的视觉纹理、声学模拟和触觉读进行统一、以物体为中心的和隐含的代表性,使数据集能够灵活使用和易于分享。我们展示了数据集作为多感知和控制测试台的有用性,通过对它进行各种基准任务进行评估,包括模型的重新识别、跨镜像检索和图像检索。