The game industry is moving into an era where old-style game engines are being replaced by re-engineered systems with embedded machine learning technologies for the operation, analysis and understanding of game play. In this paper, we describe our machine learning course designed for graduate students interested in applying recent advances of deep learning and reinforcement learning towards gaming. This course serves as a bridge to foster interdisciplinary collaboration among graduate schools and does not require prior experience designing or building games. Graduate students enrolled in this course apply different fields of machine learning techniques such as computer vision, natural language processing, computer graphics, human computer interaction, robotics and data analysis to solve open challenges in gaming. Student projects cover use-cases such as training AI-bots in gaming benchmark environments and competitions, understanding human decision patterns in gaming, and creating intelligent non-playable characters or environments to foster engaging gameplay. Projects demos can help students open doors for an industry career, aim for publications, or lay the foundations of a future product. Our students gained hands-on experience in applying state of the art machine learning techniques to solve real-life problems in gaming.
翻译:游戏业正在进入一个时代,即旧式游戏引擎正在被用内嵌的机器学习技术进行操作、分析和理解游戏游戏的操作、分析和理解的重新设计系统所取代的旧式游戏引擎正在被取代。在本文中,我们描述了我们为有兴趣将深层次学习和强化学习的最新进展应用于游戏的研究生设计的机器学习课程。这个课程是促进研究生之间跨学科合作的桥梁,不需要事先的经验设计或建造游戏。参加这个课程的研究生应用不同的机器学习技术领域,如计算机视觉、自然语言处理、计算机图形、人类计算机互动、机器人和数据分析,以解决游戏中的公开挑战。学生项目包括使用案例,如在游戏基准环境和竞赛中培训AI-机器人,了解游戏中的人类决策模式,创造智能的、不可玩耍的人物或环境,以促进游戏游戏。项目演示可以帮助学生打开行业职业生涯的大门,目的是出版,或者奠定未来产品的基础。我们的学生在应用艺术机器学习技术解决游戏中的真实问题方面获得了亲身体验。