Context-based copresence detection schemes are a necessary prerequisite to building secure and usable authentication systems in the Internet of Things (IoT). Such schemes allow one device to verify proximity of another device without user assistance utilizing their physical context (e.g., audio). The state-of-the-art copresence detection schemes suffer from two major limitations: (1) they cannot accurately detect copresence in low-entropy context (e.g., empty room with few events occurring) and insufficiently separated environments (e.g., adjacent rooms), (2) they require devices to have common sensors (e.g., microphones) to capture context, making them impractical on devices with heterogeneous sensors. We address these limitations, proposing Next2You, a novel copresence detection scheme utilizing channel state information (CSI). In particular, we leverage magnitude and phase values from a range of subcarriers specifying a Wi-Fi channel to capture a robust wireless context created when devices communicate. We implement Next2You on off-the-shelf smartphones relying only on ubiquitous Wi-Fi chipsets and evaluate it based on over 95 hours of CSI measurements that we collect in five real-world scenarios. Next2You achieves error rates below 4%, maintaining accurate copresence detection both in low-entropy context and insufficiently separated environments. We also demonstrate the capability of Next2You to work reliably in real-time and its robustness to various attacks.


翻译:以环境为基础的内心内分泌检测机制是建立互联网物质(IoT)系统安全和可用认证系统的必要先决条件。这种机制使一个装置能够核查另一个装置的距离,而没有使用其物理环境(例如音频)的用户协助,就可以核查另一个装置的距离。 最先进的共心探测机制存在两大限制:(1) 它们无法精确地检测低粒(例如,空室,发生的事件很少)和不完全分离的环境(例如,相邻房间)中的共存系统(例如,相邻房间)和不完全分离的环境(例如,相邻房间)中的共测系统,(2) 它们需要装置,以便拥有共同的传感器(如麦克风)来捕捉环境,使不同传感器的装置不切实际操作。 此类机制允许一种装置能够使用物理环境(例如音响音音)来核查另一个装置,即利用频道状态信息(CSI)来协助用户协助另一个装置。 特别是,我们利用一系列子容器的大小和阶段价值,具体指定一个W-Fi频道,以捕捉到设备通信所创建的强的无线环境。 我们用“LW2你”的外智能手机安装的智能手机安装的智能手机,只只只只只只能捕捕取环境捕取环境捕取环境,使使用我们五个WFFFF菲芯背景评估它,在下面以下环境下进行不及评估它。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
已删除
将门创投
5+阅读 · 2019年6月28日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
0+阅读 · 2022年1月13日
Arxiv
28+阅读 · 2021年9月18日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
5+阅读 · 2019年6月28日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员