In swarm robotics, a set of robots has to perform a given task with specified internal capabilities (model) and under a given adversarial scheduler. Relation between a model $M_1$ under scheduler $S_1$, and that of a model $M_2$ under scheduler $S_2$ can be of four different types: not less powerful, more powerful, equivalent and orthogonal. In literature there are four main models of robots with lights: $\mathcal{LUMI}$, where robots have the power of observing the lights of all the robots, $\mathcal{FSTA}$ , where each robot can see only its own light, $\mathcal{FCOM}$, where each robot can observe the light of all other robots except its own and $\mathcal{OBLOT}$, where the robots do not have any light. In this paper, we investigate the computational power of $\mathcal{FSTA}$ and $\mathcal{FCOM}$ model under asynchronous scheduler by comparing it with other model and scheduler combinations. Our main focus is to understand and compare the power of persistent memory and explicit communication in robots under asynchronous scheduler.
翻译:在群温机器人中,一组机器人必须执行特定任务,具有特定的内部能力(模型)和特定对抗制表仪仪。在S_1美元下,模型$1美元与模型$2美元之间,可以分为四种不同类型:权力不小、权力强、权利强、等价和正方形。在文献中,有四大光机模型:$\mathcal{LUMI}$,机器人有权观察所有机器人的灯光;$\mathcal{FSTA}$,每个机器人只能看到自己的灯光;$mathcal{FSTA}$,每个机器人只能看到自己的灯光;$mathcal{FCOM}$,每个机器人可以观察所有其他机器人的灯光,但自己的和$mathcal{ObLOT}美元除外。在文献中,有四大灯光机器人没有光的机器人。在本文中,我们调查$\mathcal{FSAT}$和$mathcal=cal{FCOM}模型下的计算能力,每个机器人只能看到自己的灯光光, $machnchon call slallslack slummalls