Unlike 2D raster images, there is no single dominant representation for 3D visual data processing. Different formats like point clouds, meshes, or implicit functions each have their strengths and weaknesses. Still, grid representations such as signed distance functions have attractive properties also in 3D. In particular, they offer constant-time random access and are eminently suitable for modern machine learning. Unfortunately, the storage size of a grid grows exponentially with its dimension. Hence they often exceed memory limits even at moderate resolution. This work explores various low-rank tensor formats, including the Tucker, tensor train, and quantics tensor train decompositions, to compress time-varying 3D data. Our method iteratively computes, voxelizes, and compresses each frame's truncated signed distance function and applies tensor rank truncation to condense all frames into a single, compressed tensor that represents the entire 4D scene. We show that low-rank tensor compression is extremely compact to store and query time-varying signed distance functions. It significantly reduces the memory footprint of 4D scenes while surprisingly preserving their geometric quality. Unlike existing iterative learning-based approaches like DeepSDF and NeRF, our method uses a closed-form algorithm with theoretical guarantees.
翻译:与 2D 光栅图像不同, 3D 视觉数据处理没有单一的主导代表。 不同的格式, 如点云、 模头或隐含函数, 都有其优缺点。 尽管如此, 签名的远程函数等网格表达方式在 3D 中也有吸引力。 特别是, 它们提供恒定时间随机访问, 并且非常适合现代机器学习 。 不幸的是, 网格的存储大小随其维度而成指数成指数指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数化指数( ), 包括塔克、 、 高调列列列列列列列列列列 列 、 列列列 和 和 阵列 阵列 列 、 等 3D 3D 数据 数据 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、