We study fundamental limitations of the generic Quantum Approximate Optimization Algorithm (QAOA) on constrained problems where valid solutions form a low dimensional manifold inside the Boolean hypercube, and we present a provable route to exponential improvements via constraint embedding. Focusing on permutation constrained objectives, we show that the standard generic QAOA ansatz, with a transverse field mixer and diagonal r local cost, faces an intrinsic feasibility bottleneck: even after angle optimization, circuits whose depth grows at most linearly with n cannot raise the total probability mass on the feasible manifold much above the uniform baseline suppressed by the size of the full Hilber space. Against this envelope we introduce a minimal constraint enhanced kernel (CE QAOA) that operates directly inside a product one hot subspace and mixes with a block local XY Hamiltonian. For permutation constrained problems, we prove an angle robust, depth matched exponential enhancement where the ratio between the feasible mass from CE QAOA and generic QAOA grows exponentially in $n^2$ for all depths up to a linear fraction of n, under a mild polynomial growth condition on the interaction hypergraph. Thanks to the problem algorithm co design in the kernel construction, the techniques and guarantees extend beyond permutations to a broad class of NP-Hard constrained optimization problems.
翻译:我们研究了通用量子近似优化算法(QAOA)在约束问题上的基本局限性,其中有效解构成布尔超立方体内的低维流形,并提出了一条通过约束嵌入实现可证明指数级改进的路径。针对置换约束目标函数,我们证明标准通用QAOA拟设(采用横向场混合器和对角r局部代价)面临固有的可行性瓶颈:即使经过角度优化,深度至多随n线性增长的量子电路也无法将可行流形上的总概率质量提升至远高于受整个希尔伯特空间大小抑制的均匀基线。在此背景下,我们引入了一种最小约束增强核(CE QAOA),该核直接在乘积独热子空间内操作,并通过块局部XY哈密顿量进行混合。对于置换约束问题,我们证明了一种角度鲁棒、深度匹配的指数级增强:在相互作用超图满足温和多项式增长条件下,对于所有深度直至n的线性比例,CE QAOA与通用QAOA在可行质量上的比值随$n^2$呈指数增长。得益于核构造中的问题-算法协同设计,相关技术与保证可超越置换问题,扩展至一大类NP难约束优化问题。