Connected components is a fundamental kernel in graph applications. The fastest existing parallel multicore algorithms for connectivity are based on some form of edge sampling and/or linking and compressing trees. However, many combinations of these design choices have been left unexplored. In this paper, we design the ConnectIt framework, which provides different sampling strategies as well as various tree linking and compression schemes. ConnectIt enables us to obtain several hundred new variants of connectivity algorithms, most of which extend to computing spanning forest. In addition to static graphs, we also extend ConnectIt to support mixes of insertions and connectivity queries in the concurrent setting. We present an experimental evaluation of ConnectIt on a 72-core machine, which we believe is the most comprehensive evaluation of parallel connectivity algorithms to date. Compared to a collection of state-of-the-art static multicore algorithms, we obtain an average speedup of 12.4x (2.36x average speedup over the fastest existing implementation for each graph). Using ConnectIt, we are able to compute connectivity on the largest publicly-available graph (with over 3.5 billion vertices and 128 billion edges) in under 10 seconds using a 72-core machine, providing a 3.1x speedup over the fastest existing connectivity result for this graph, in any computational setting. For our incremental algorithms, we show that our algorithms can ingest graph updates at up to several billion edges per second. To guide the user in selecting the best variants in ConnectIt for different situations, we provide a detailed analysis of the different strategies. Finally, we show how the techniques in ConnectIt can be used to speed up two important graph applications: approximate minimum spanning forest and SCAN clustering.


翻译:连接的组件是图形应用程序中的基本内核。 连接的当前速度最快的平行多核心算法基于某种形式的边缘抽样和(或)连接和压缩树。 但是, 这些设计选择的许多组合还没有被探索。 在本文中, 我们设计了“ 连接It” 框架, 它提供了不同的取样策略以及各种树链接和压缩计划。 连接 使我们能够获得数百种新的连接算法新变量, 其中多数都延伸到计算横贯森林的计算。 除了静态图形外, 我们还扩展“ 连接It”, 以支持同时设置中的插入和连接查询组合。 我们在72个核心机器上展示了“ 连接It” 的实验性评估, 我们认为这是对平行连接算法的最为全面的评估。 比较了“ TrinkItIt” 框架, 它提供了不同的取样策略, 与目前每个图表中最快速的算法相比, 我们的平均速度速度增长。 使用“ 连接ItrealIT” 可以在两个最大的公开图表上进行互连通( 超过35亿个顶的“ ” 和“ liver liver” 分析, 在1010亿“x” 中提供我们最新的快速的“ 的“我们” 显示” 的“我们当前图表” 显示一个最接近的“Sqolorlevorlational’x” 的计算” 显示” 。 在10秒钟中, 显示一个最接近的计算结果, 。 。

0
下载
关闭预览

相关内容

【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
182+阅读 · 2020年4月26日
临床自然语言处理中的嵌入综述,SECNLP: A survey of embeddings
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动态知识图谱补全论文合集
专知
60+阅读 · 2019年4月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2021年4月16日
Arxiv
24+阅读 · 2020年3月11日
Arxiv
6+阅读 · 2020年2月15日
Arxiv
3+阅读 · 2018年2月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动态知识图谱补全论文合集
专知
60+阅读 · 2019年4月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员