The standard model and the bandit model are two generalizations of the mistake-bound model to online multiclass classification. In both models the learner guesses a classification in each round, but in the standard model the learner recieves the correct classification after each guess, while in the bandit model the learner is only told whether or not their guess is correct in each round. For any set $F$ of multiclass classifiers, define $opt_{std}(F)$ and $opt_{bandit}(F)$ to be the optimal worst-case number of prediction mistakes in the standard and bandit models respectively. Long (Theoretical Computer Science, 2020) claimed that for all $M > 2$ and infinitely many $k$, there exists a set $F$ of functions from a set $X$ to a set $Y$ of size $k$ such that $opt_{std}(F) = M$ and $opt_{bandit}(F) \ge (1 - o(1))(|Y|\ln{|Y|})opt_{std}(F)$. The proof of this result depended on the following lemma, which is false e.g. for all prime $p \ge 5$, $s = \mathbf{1}$ (the all $1$ vector), $t = \mathbf{2}$ (the all $2$ vector), and all $z$. Lemma: Fix $n \ge 2$ and prime $p$, and let $u$ be chosen uniformly at random from $\left\{0, \dots, p-1\right\}^n$. For any $s, t \in \left\{1, \dots, p-1\right\}^n$ with $s \neq t$ and for any $z \in \left\{0, \dots, p-1\right\}$, we have $\Pr(t \cdot u = z \mod p \text{ } | \text{ } s \cdot u = z \mod p) = \frac{1}{p}$. We show that this lemma is false precisely when $s$ and $t$ are multiples of each other mod $p$. Then using a new lemma, we fix Long's proof.
翻译:标准模型和土匪模型是 {F} 和 $opt} bandit} (F) 的两套错误模型。 在两个模型中, 学习者对每一轮的分类进行猜测, 但在标准模型中, 学习者对每次猜测后正确分类, 而在土匪模型中, 学习者只被告知每轮的猜测是否正确。 对于任何一套多级分类器的F美元, 定义$opt} (F) 美元和$opt} 美元(F) 是标准模型和土匪模型中最坏的预测错误。 长( 理论计算机科学, 2020) 声称所有美元 > 2美元, 无限多美元, 有一套美元 美元到 美元 美元。 因此, 美元=美元=美元=美元=美元, 美元=美元=美元= 美元= 美元=美元=美元。 美元= 全部的(F) = 美元= 美元= 美元=美元=美元, 美元= 美元= 美元= 美元= 美元= 美元= 美元。