This paper presents the first AI/ML system for automating building damage assessment in uncrewed aerial systems (sUAS) imagery to be deployed operationally during federally declared disasters (Hurricanes Debby and Helene). In response to major disasters, sUAS teams are dispatched to collect imagery of the affected areas to assess damage; however, at recent disasters, teams collectively delivered between 47GB and 369GB of imagery per day, representing more imagery than can reasonably be transmitted or interpreted by subject matter experts in the disaster scene, thus delaying response efforts. To alleviate this data avalanche encountered in practice, computer vision and machine learning techniques are necessary. While prior work has been deployed to automatically assess damage in satellite imagery, there is no current state of practice for sUAS-based damage assessment systems, as all known work has been confined to academic settings. This work establishes the state of practice via the development and deployment of models for building damage assessment with sUAS imagery. The model development involved training on the largest known dataset of post-disaster sUAS aerial imagery, containing 21,716 building damage labels, and the operational training of 91 disaster practitioners. The best performing model was deployed during the responses to Hurricanes Debby and Helene, where it assessed a combined 415 buildings in approximately 18 minutes. This work contributes documentation of the actual use of AI/ML for damage assessment during a disaster and lessons learned to the benefit of the AI/ML research and user communities.


翻译:本文介绍了首个用于自动化评估小型无人机系统(sUAS)影像中建筑物损坏情况的人工智能/机器学习系统,该系统已在联邦宣布的灾害(飓风黛比和海伦)期间投入实际运行。针对重大灾害,sUAS团队被派遣至受灾区域采集影像以评估损害;然而在近期灾害中,各团队每日合计传输的影像数据量达47GB至369GB,远超灾害现场专家可及时传输或解读的合理范围,从而延误了响应行动。为缓解实践中遇到的这种数据洪流,计算机视觉与机器学习技术不可或缺。尽管已有研究部署了基于卫星影像的自动化损害评估系统,但目前尚无基于sUAS的损害评估系统投入实际应用,所有已知工作均局限于学术环境。本研究通过开发并部署基于sUAS影像的建筑物损害评估模型,确立了该领域的实践标准。模型开发阶段使用了已知规模最大的灾后sUAS航空影像数据集进行训练,该数据集包含21,716个建筑物损害标注,并对91名灾害应对专业人员进行了操作培训。性能最优的模型在飓风黛比和海伦的响应行动中部署应用,在约18分钟内完成了共计415栋建筑物的评估。本工作记录了AI/ML在灾害期间实际应用于损害评估的案例,并总结了可供AI/ML研究界与用户群体借鉴的经验教训。

0
下载
关闭预览

相关内容

IBM的国防人工智能推进:加速任务规划和决策支持
美智库CNAS:无人机扩散数据
专知会员服务
22+阅读 · 2024年9月17日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
VIP会员
相关基金
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员